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We investigate the scattering of a plane acoustic wave by an axisymmetric vortex in
two dimensions. We consider vortices with localized vorticity, arbitrary circulation and
small Mach number. The wavelength of the acoustic waves is assumed to be much
longer than the scale of the vortex. This enables us to define two asymptotic regions:
an inner, vortical region, and an outer, wave region. The solution is then developed
in the two regions using matched asymptotic expansions, with the Mach number
as the expansion parameter. The leading-order scattered wave field consists of two
components. One component arises from the interaction in the vortical region, and
takes the form of a dipolar wave. The other component arises from the interaction in
the wave region. For an incident wave with wavenumber k propagating in the positive
X-direction, a steepest descents analysis shows that, in the far-field limit, the leading-
order scattered field takes the form i(π − θ)eikX + 1

2
cos θ cot ( 1

2
θ)(2π/kR)1/2 ei(kR−π/4),

where θ is the usual polar angle. This expression is not valid in a parabolic region
centred on the positive X-axis, where kRθ2 = O(1). A different asymptotic solution
is appropriate in this region. The two solutions match onto each other to give a
leading-order scattering amplitude that is finite and single-valued everywhere, and
that vanishes along the X-axis. The next term in the expansion in Mach number has
a non-zero far-field response along the X-axis.

1. Introduction
When sound propagates through a flow with vorticity, the sound field may be

significantly modified by its interaction with the vortical flow. Examples are the
propagation of sound through turbulence (Kraichnan 1953; Lighthill 1953; Batchelor
1956), and the propagation of sound through the wakes of jet engines (Ferziger
1974). Lund & Rojas (1989) have proposed using ultrasound to probe turbulence in
laboratory experiments (see also Labbé & Pinton 1998; Oljaca et al. 1998).

A first step is to understand the following fundamental problem: when a plane
sound wave is incident on an axisymmetric vortex in two dimensions, what is the
resulting scattered sound field?

There are two limits which afford both conceptual and analytical simplification.
One is the limit in which the acoustic waves have small wavelength compared with
the scale of the vortex; we refer to this as the WKB limit. The other is the opposite
limit, in which the acoustic waves have long wavelength compared with the scale of
the vortex; we refer to this as the Born limit.

In the WKB limit, acoustic waves travel many wavelengths as they propagate
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through the vortex, and their ray paths are deflected by the vortical flow. When the
Mach number of the flow in the vortex is small, this deflection causes a caustic to
form along a straight line which extends from the vortex in the direction opposite
to the direction from which the plane wave is incident (Georges 1972). We refer to
this direction as the ‘forward scatter direction’. The WKB limit was first investigated
by Lindsay (1948) for rays originating from a single point (see also Salant 1969;
Broadbent 1977). It was argued by Georges (1972) that the WKB limit is appropriate
for sound waves in the atmosphere. However, it is inappropriate for sound waves
propagating though vortices in laboratory apparatus, such as that used by Oljaca et
al. (1998), or for the propagation of sound generated by turbulence in the wakes of jet
aircraft, where the vortices are small compared with the typical wavelength of sound
waves (Lighthill 1952). For these problems, it is necessary to consider the opposite,
Born, limit.

In the Born limit, the nature of the interaction is quite different. The large-scale
acoustic wave induces pressure and velocity perturbations in the vortex, which in
turn induce a contribution to the scattered wave field. In addition, when the vortex
has non-zero circulation, the velocity due to the vortex has a long-range nature, with
azimuthal velocity inversely proportional to distance from the vortex. The interaction
between this long-range azimuthal velocity and the incident plane wave induces a
second contribution to the scattered wave field. Both contributions must be included
in any consistent theory of scattering.

The Born limit was first investigated by Müller & Matschat (1959) and Pitaevskii
(1959). Müller & Matschat (1959) considered a distributed vortex with velocity
discontinuities, while Pitaevskii (1959), and subsequently Fetter (1964) and Ferziger
(1974), considered the case of a point vortex. O’Shea (1975) considered an incoming
wave generated by a point source. In the ‘far-field’ limit, i.e. the limit of large distance
from the vortex, these authors predicted that the scattered field has infinite amplitude
in the forward scatter direction. However, the validity of the point vortex model is
questionable for compressible flows, since it implies that a vacuum exists in a small
but finite core at the centre of the vortex (see, for example, Barsony-Nagy, Er-El &
Yungster 1987). Using Lighthill’s acoustic analogy, Fabrikant (1983) investigated the
scattered field produced by a distributed vortex and again found an infinite scattered
wave amplitude in the forward scatter direction in the far-field limit.

The problem of scattering of sound by a distributed vortex was investigated both
numerically and analytically by Colonius, Lele & Moin (1994). They integrated the
nonlinear equations of motion for a two-dimensional compressible gas numerically,
and compared the resulting solutions with analytical solutions in both the WKB
and Born limits. Their numerical solutions in the case of non-vanishing circulation
indicated no tendency for the amplitude of the scattered wave field in the forward
scatter direction to become infinite.

Sakov (1993) returned to the problem of scattering of sound by a point vortex in
the Born limit. The solution in a region about the axis in the forward scatter direction
in the far field takes a different form from elsewhere, but no singularity develops.
The dominant far-field contribution to the solution has angular dependence (π− θ),
with a smooth transition about the direction θ = 0 which has the form of a Fresnel
function. However, no detailed analysis of the solution was undertaken, and the issue
of the validity of the point vortex model combined with Lighthill’s method remains.

In this paper, we consider scattering of sound by a distributed vortex in the Born
limit. We suppose that the incident plane wave is of small amplitude, so that all
terms quadratic in the wave amplitude may be neglected. We suppose further that the
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Mach number of the flow in the vortex is small – an assumption which is necessarily
violated by point vortices. These assumptions enable us to identify two asymptotic
regions: an inner, vortical region, in which the flow consists of the initial vortex, with
perturbations induced by the acoustic wave, and an outer, wave region, in which the
flow consists of the long-range azimuthal velocity of the vortex plus the incident and
scattered acoustic waves. We develop matched asymptotic expansions for the flow
in both regions. The analysis is similar in spirit to that undertaken by Crow (1970)
for the problem of aerodynamic sound generation (see also Batchelor 1956). The
principal difference is that in our case sound propagates towards the vortical region
as a plane wave, whereas in Crow (1970) all the sound is generated spontaneously
by the motion in the vortical region. It is important to undertake this matched
asymptotic analysis because, as pointed out by Crow (1970), there is no guarantee
that the acoustic analogy formulation of Lighthill (1952), as used previously for
this problem, represents a consistent asymptotic analysis of the equations of motion.
Furthermore, our matched asymptotic analysis shows in detail how the interaction
between the incident acoustic wave and the vortex occurs. Such insight cannot be
obtained from a straightforward application of Lighthill’s acoustic analogy.

In § 2 we develop the equations and asymptotic scalings in the two asymptotic
regions. In § 3 we show how the incident wave induces a time-dependent flow in the
vortical region, which can in turn induce a contribution to the scattered wave field in
the wave region. In § 4 we derive the leading-order scattered flow in the wave region,
and we consider its far-field behaviour in § 5. The leading-order scattered wave field
vanishes along the forward scatter direction, and in § 6 we show that a scattered wave
field with non-zero amplitude along the forward scatter direction arises at the next
order. In § 7 we discuss briefly how our analysis is modified when the circulation of
the vortex vanishes, and offer some concluding remarks.

2. Statement of the problem
2.1. Governing equations and flow configuration

We consider flow in a two-dimensional homentropic ideal gas. The corresponding
equations of motion are

ρa
Du

Dt
= −∇pa, (2.1a)

Dρa
Dt

+ ρa∇ · u = 0, (2.1b)

pa

p0

=

(
ρa

ρ0

)γ
. (2.1c)

Here, u is the two-dimensional velocity, pa is the absolute pressure, ρa is the absolute
density, and ∇ is the two-dimensional gradient operator. The relation (2.1c) is the
equation of state for a homentropic ideal gas, and γ > 1 is the constant ratio of
specific heats. The constants p0 and ρ0 are reference values of the pressure and
density respectively. We shall take p0 and ρ0 to be the uniform values that the
pressure and density take when the fluid is at rest. The equations (2.1) also describe
motion in a shallow water layer, with ρa now standing for the depth of the fluid; this
corresponds to γ = 2 (see for example Stoker 1957).

In this paper, attention will be restricted to flows in which vorticity is concentrated
in some region of size L, which we refer to as the ‘vortical region’. In this region, the



308 R. Ford and S. G. Llewellyn Smith

Wave region

Vortical region

L

x

r
y

1
2 k =

pL
M St h

Figure 1. A schematic picture showing the vortical region and the surrounding wave region. The
vortical region is characterized by the scale L, and the wave region by the longer scale LM−1. The
concentric circles in the vortical region represent contours of vorticity in the undisturbed vortex.
Outside this region, the vorticity is exponentially small. The lines in the wave region represent the
wave crests of the incident plane wave, which propagates in the direction of positive x. Solid and
dashed lines represent negative and positive pressure perturbations respectively.

flow is dominated by the vortex which, in the absence of any incident acoustic wave,
is assumed to be axisymmetric. The Mach number M of the vortex is then defined to
be M ≡ U/c0 � 1, where U is the typical magnitude of the azimuthal velocity in the
vortex, and c0 ≡ (γp0/ρ0)

1/2 is the speed of linear sound waves in (2.1). The velocity
scale U and length scale L define a time scale τv ≡ L/U appropriate to flow in the
vortical region.

The incident acoustic wave is assumed to be a monochromatic plane wave, with
radian frequency ω, wavenumber k = ω/c0, and wavelength λ = 2π/k. In this paper
we are interested in the interaction between the wave and the vortex in the Born
limit, in which the wavelength of waves of frequency ω is much larger than the length
scale L of the vortical region, i.e. λ � L. The frequency ω defines a second time
scale, τw ≡ 2π/ω, equal to the period of the wave. Defining the Strouhal number
St ≡ ωL/U, the ratio τv/τw = St/2π. Since we have M � 1 by assumption, it is
natural to take τv/τw = O(1) and the condition λ � L may be written equivalently
as (τv/τw)M � 1, i.e. the dimensionless wavenumber is O(1). The limits of large and
small Strouhal number can be recovered from our analysis by taking the appropriate
limits of large and small ω respectively. The wavelength of the wave is related
to the vortical length scale L by λ = (τv/τw)−1LM−1. The long length scale LM−1

characterizes a second region, which we refer to as the ‘wave region’, appropriate to
the wavelength of the incident plane wave. The two regions are shown in figure 1.

The governing parameters of the problem are as follows. The incoming wave has
frequency ω, wavenumber k = ω/c0 and pressure amplitude P i. The vortex is entirely
described by its vorticity (U/L)ζ0(r/L), where r ≡ |x| is the radial coordinate and
where ζ0(r/L) is non-dimensional. We shall require that ζ0(r/L) decay faster than
any power of r/L for large r/L. We will also use the non-dimensional parameters M
defined above and δ, the non-dimensional wave amplitude, to be defined below.

We now develop non-dimensional equations suitable for the flow in the two regions.
It is convenient to replace the absolute pressure pa and absolute density ρa by scaled



Scattering of acoustic waves by a vortex 309

perturbations away from their uniform reference values. We introduce the non-
dimensional variables p and ρ, defined such that

pa = p0(1 + γM2p), ρa = ρ0(1 +M2ρ). (2.2)

With the velocity u scaled on U, the spatial coordinate x scaled on L, and the
time t scaled on L/U, and with the non-dimensional pressure and density variables p
and ρ as defined in (2.2), the dimensionless equations appropriate to the flow in the
vortical region are

(1 +M2ρ)
Du

Dt
= −∇p, (2.3a)

M2

(
Dρ

Dt
+ ρ∇ · u

)
+ ∇ · u = 0, (2.3b)

γM2p = (1 +M2ρ)γ − 1. (2.3c)

Thus, in the vortical region, the leading-order dynamics (M = 0 in (2.3a) and (2.3b))
is simply the two-dimensional incompressible Euler equations.

To obtain equations for the surrounding wave region, we rescale the equations (2.3)
using the long length scale LM−1. We therefore introduce the wave-region spatial
variable X = Mx. Non-dimensional fields in the wave region are represented by
capital letters (except for the density ρ, which we denote in the wave region by H).
As we shall see, the velocity field is one order in M smaller in the wave region, so
instead of U we write MU . With these scalings, the non-dimensional equations (2.3)
become

(1 +M2H)

(
∂U

∂t
+M2U · ∇U

)
= −∇P , (2.4a)

∂H

∂t
+ ∇ ·U +M2∇ · (UH) = 0, (2.4b)

γM2P = (1 +M2H)γ − 1, (2.4c)

where the gradient operator acting on a wave-region quantity corresponds to differ-
entiation with respect to X . In the wave region, the nonlinear terms are of small order
in M, and the leading-order dynamics of (2.4) admits propagating acoustic waves as
solutions. Equations (2.3) and (2.4) are the non-dimensional equations obtained by
Crow (1970).

We denote the non-dimensional amplitude of the incident acoustic wave by
δ ≡ P i/(ρ0c

2
0). Since linear waves are supported at leading order in (2.4), it ap-

pears that we may take δ = O(1). This implies that the pressure perturbations
associated with the incident acoustic wave are the same magnitude as the pressure
perturbations associated with the axisymmetric vortex in the vortical region. Taking
δ = O(1), however, leads to significant complications in the analysis. This is because
the nonlinear terms in (2.4a) and (2.4b) imply that nonlinear wave effects occur at
O(M2δ2). The purpose of this paper is to investigate the interaction of the acoustic
wave with the vortex. Therefore, although it is important to retain the nonlinear terms
in (2.4a) and (2.4b) to account for the interaction of the incident acoustic wave with
the long-range velocity field due to the vortex, we neglect any nonlinearity that arises
from interaction of the acoustic wave with itself. Consequently we take δ sufficiently
small that terms O(δ2) can always be neglected when we expand in M. It turns out
that δ �M4 is sufficient for the present purposes. However, we shall retain δ and M
as independent asymptotic parameters throughout our analysis. The flow in the two
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regions is now expressed as an asymptotic expansion in M and δ, and matched where
the regions overlap.

2.2. Leading-order solution in the vortical region

The expansion for the flow in the vortical region takes the form

u = u0 + δ(u01 +Mu11 +M2u21 +M3 lnMu311 +M3u31)

+O(δM4 lnM, δ2), (2.5a)

p = p0 + δ(p01 +Mp11 +M2p21 +M3 lnMp311 +M3p31)

+O(M2, δM4 lnM, δ2), (2.5b)

ρ = ρ0 + δ(ρ01 +Mρ11 +M2ρ21 +M3 lnMρ311 +M3ρ31)

+O(M2, δM4 lnM, δ2). (2.5c)

Our normalization condition on u is that the vorticity, and hence the velocity, vanishes
at O(M2) and higher orders in M2. We could calculate the O(M2) and higher-order
δ-independent contributions to pressure and density, but we will not need them so
they have been suppressed in the expansion.

We specify the leading-order vorticity, ζ0 ≡ k · (∇ × u0), where k is a unit vector
normal to the plane. This defines the basic vortex, which depends only on r. Equation
(2.3b) implies ∇ · u0 = 0, and so we may define a streamfunction ψ0 such that
u0 = k × ∇ψ0. The rest of (2.3) and the definition of vorticity then lead to

∇2ψ0 = ζ0,
dp0

dr
= rΩ2(r), p0 = ρ0, (2.6)

where

Ω(r) =
1

r

dψ0

dr
(2.7)

is the angular velocity of the vortex. Solving (2.6) subject to the boundary condition
p0 → 0 as r →∞, we obtain

ψ0(r) = ln r

∫ r

0

sζ0(s) ds+

∫ ∞
r

s ln s ζ0(s) ds, (2.8a)

p0 = ρ0 = −
∫ ∞
r

sΩ2(s) ds. (2.8b)

In the limit r →∞, we have

ψ0 =
Γ

2π
ln r + O(r−∞), (2.9)

where O(r−∞) denotes terms that decay faster than any power of r (Llewellyn Smith
1995), and the circulation Γ is given by

Γ = 2π

∫ ∞
0

sζ0(s) ds. (2.10)

In addition, as r →∞, we have

Ω =
Γ

2πr2
+ O(r−∞), p0 = − Γ 2

8π2r2
+ O(r−∞). (2.11)
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It is convenient for later use to replace the momentum equation (2.3a) in the
vortical region by the vorticity equation and the divergence equation. The vorticity
equation is

∂ζ

∂t
+ ∇ · (uζ) = 0. (2.12)

Taking the divergence of (2.3a) we obtain

∇ ·
(

(1 +M2ρ)
Du

Dt

)
+ ∇2p = 0. (2.13)

2.3. Leading-order solution in the wave region

The expansion for the flow in the wave region takes the form

U = U 0 + δ(U 01 +M2U 21 +M4 lnMU 411) + O(δM4, δ2), (2.14a)

P = δ(P01 +M2P21 +M4 lnMP411) + O(M2,M4δ, δ2), (2.14b)

H = δ(H01 +M2H21 +M4 lnMH411) + O(M2,M4δ, δ2). (2.14c)

Once again, we neglect pure powers of M2 in the expansion since they do not affect
the scattering problem. Strictly speaking, the truncation of (2.14) is not asymptotically
consistent, since we have separated terms with the same algebraic power of M, namely
M4 lnM δ and M4δ. However, since we will be interested only in the form of the
M4 lnM δ term, and will not be summing the asymptotic series to this order, we may
safely ignore the M4δ term.

In the wave region, the vorticity is small beyond all orders in M. This implies that,
to all algebraic orders in M, the velocity field U may be written using a velocity
potential Φ, defined by U = ∇Φ. Substituting into (2.4a), using (2.4c), and integrating,
we have

∂Φ

∂t
+ 1

2
M2∇Φ · ∇Φ+

1

γ− 1
M−2[(1 + γM2P )(γ−1)/γ − 1] = 0. (2.15)

Equations (2.15), (2.4b) and (2.4c) are a complete set of equations for the flow in the
wave region.

The flow in the wave region at O(1) must match to the flow in the vortical region.
Since the leading-order flow in the vortical region is independent of t, we seek a
solution in the wave region that is also independent of t. Equations (2.15) and (2.4c)
then imply that P0 = H0 = 0. This is reflected in the fact that the expansions (2.14b)
and (2.14c) for P and H start at O(M2). Then (2.4b) implies

∇2Φ0 = 0. (2.16)

The associated velocity, in the limit R → 0, must match to the velocity in the vortical
region in the limit r →∞, given in (2.11). The solution for Φ0 is

Φ0 =
Γ

2π
θ, (2.17)

where θ is the polar angle. Although Φ0 is multivalued, the corresponding angular
velocity is not and clearly matches onto (2.11).

2.4. The solution in the wave region at O(δ)

The amplitude of the incident acoustic wave δ is not related to M, and therefore the
flow in the wave region at O(δ) must be a solution of the leading-order equations.
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From (2.4) and (2.15), we have

∂Φ01

∂t
+ P01 = 0, (2.18a)

∂H01

∂t
+ ∇2Φ01 = 0, (2.18b)

P01 = H01. (2.18c)

From (2.18), we obtain

∂2Φ01

∂t2
− ∇2Φ01 = 0. (2.19)

This is simply the linear wave equation for sound waves propagating with a sound
speed of unity. The same equation holds for P01. In this problem, plane sound waves
with a single frequency ω propagate towards the vortex from the negative X-direction.
The solution for these waves is then

P01 = ei(kX−ωt), Φ01 = − i

ω
ei(kX−ωt), (2.20)

where k and ω satisfy the dispersion relation ω = k for waves propagating in the
positive X-direction, and it is understood that in (2.20) and subsequent expressions
the real part is taken. We shall henceforth take k and ω to be real and positive.

The wave equation (2.19) also supports outwardly propagating solutions, which
correspond to a response at the same order as the incoming wave. In fact, there are
no such terms, because they would have logarithmic or algebraic singularities for
small R, and we shall see that there are no possible terms for them to match onto in
the vortical region.

3. The solution at O(Mδ)

3.1. The solution in the vortical region at O(δ)

At successive orders in M2, the pressure and density in the vortical region are
modified by compressibility, and the pressure and density in the wave region respond
appropriately. The flow in the vortical region must also match onto the flow in the
wave region at O(δ), and so we calculate the vortical flow at O(δ), O(Mδ) and so
forth.

Expanding the O(δ) solution in the wave region for small R gives

P01 = e−iωt(1 + ikX + O(R2)), (3.1a)

U 01 = i e−iωt + O(R), (3.1b)

where i is the unit vector in the x-direction. An elementary application of asymptotic
matching leads to the conditions

p01 → e−iωt, p11 → ikx e−iωt, (3.2a)

u01 → 0, u11 → i e−iωt, (3.2b)

for the inner quantities for large r. We could use Van Dyke’s rule or an intermediate
variable approach to carry out the matching, but there are no complications in this
problem and we can carry out the matching naively.
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The governing equations in the vortical region at O(δ) are

∂ζ01

∂t
+ ∇ · (u0ζ01 + u01ζ0) = 0, (3.3a)

∇ · u01 = 0, (3.3b)

∇2p01 + ∇ · (u0 · ∇u01 + u01 · ∇u0) = 0. (3.3c)

Equation (3.3b) implies that we may write u01 = k × ∇ψ01. Since ζ0 is a function
of r alone, and u0 is purely azimuthal, it is natural to express (3.3a) in plane polar
coordinates:

∂ζ01

∂t
+ Ω(r)

∂ζ01

∂θ
− 1

r

dζ0

dr

∂ψ01

∂θ
= 0, (3.4)

where ζ01 = ∇2ψ01. This is the linearized vorticity equation. We write the streamfunc-
tion as a sum over azimuthal modes: ψ01 =

∑∞
n=−∞ gn(r) ei(nθ−ωt). The functions gn(r)

are solutions to the radial Rayleigh equation,

g′′n +
1

r
g′n −

(
n2

r2
− nζ ′0
r(ω − nΩ)

)
gn = 0, (3.5)

that are regular at the origin. Solutions for |n| > 0 may encounter critical layers
where ω = nΩ, and in these cases equation (3.5) may be regularized by including a
small amount of viscosity (Lin 1955; Reinschke, Möhring & Obermeier 1997) or by
a nonlinear critical layer (see for example Stewartson 1978; Warn & Warn 1978).

For n = 0, we have g0(r) = α0, and so g0(r) represents a constant contribution to the
streamfunction, which has no dynamical significance. For |n| > 0, gn(r) is proportional
to r|n| as r → 0 and takes the form αn(r

|n| + βnr
−|n|) as r → ∞, since ζ0(r) is localized.

The constant αn is arbitrary, since (3.5) is a linear equation, and must be determined
by matching conditions in the limit r →∞. The constant βn is determined by solving
(3.5), and it depends on ω and Ω(r). For |n| = 1, it can be shown that βn is finite for all
values of ω and for all choices of Ω(r), and this solution encounters no critical-layer
singularity at ω = nΩ (cf. (3.10)). However, for |n| > 1, βn may be unbounded for
some discrete values of ω. These values of ω are the real eigenfrequencies of (3.5),
with eigenfunctions gn(r) which are regular as r → 0 and bounded as r →∞. Thus if
the incident plane wave frequency ω is equal to an eigenfrequency of (3.5), resonance
will occur. In that case, we would be unable to find a time-periodic solution to our
problem. Instead, we would have to solve an initial-value problem, in which nonlinear
effects would presumably arrest the resonant growth. To avoid this complication, we
shall henceforth assume that the vortex has no eigenfunctions with eigenfrequency ω.
However, as we shall see below, our analysis does not require the detailed structure
of the gn(r) for |n| > 1.

We can now show that u01 = 0. For |n| > 0, solutions of (3.5) take the form r|n| as r →
∞. However, causal solutions for Φ in the wave region are Hankel functions of the first
kind of order |n|. Thus Φ takes the form R−|n| as R → 0, and the corresponding velocity
cannot match to a velocity in the vortical region derived from solutions of (3.5). Hence
we may exclude all solutions of (3.5) for |n| > 0 in the vortical region at O(δ).

For n = 0 the velocity is zero, and (2.3a) then implies that p01 is constant in space.
The appropriate solution to (3.3) that satisfies the matching conditions (3.2) is

p01 = ρ01 = e−iωt, (3.6a)

u01 = 0. (3.6b)

This represents the complete solution of the flow in the vortical region at O(δ).
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3.2. The solution in the vortical region at O(Mδ)

At O(Mδ), the vorticity equation (2.12), continuity equation (2.3b), and pressure
equation (2.13) are

∂ζ11

∂t
+ ∇ · (u0ζ11 + u11ζ0) = 0, (3.7a)

∇ · u11 = 0, (3.7b)

∇2p11 + ∇ · (u0 · ∇u11 + u11 · ∇u0) = 0. (3.7c)

Equations (3.7) for u11 and p11 are identical to (3.3) for u01 and p01. Thus, we write
u11 = k×∇ψ11. Then ψ11 is written as a sum over azimuthal modes, and the solution
for each azimuthal mode is the solution of (3.5) that is regular as r → 0. The matching
condition (3.2b) implies

ψ11 → −r sin θ e−iωt as r →∞. (3.8)

Azimuthal mode one is therefore non-zero, while the others are zero by the arguments
given in § 3.1, and so we write

ψ11 = g1(r) ei(θ−ωt) + g−1(r) ei(−θ−ωt). (3.9)

The functions g1(r) and g−1(r) can be deduced from the results of Smith & Rosenbluth
(1990) and Llewellyn Smith (1995), giving

ψ11 = K1(Ω − ω)r ei(θ−ωt) +K−1(Ω + ω)r ei(−θ−ωt), (3.10)

where the constants K1 and K−1 must be determined by the asymptotic matching
condition (3.8). This gives K1 = K−1 = −i/2ω, and hence

ψ11 = −r
(

sin θ + i
Ω

ω
cos θ

)
e−iωt. (3.11)

In the limit r →∞, (3.11) implies that

ψ11 = −r sin θ e−iωt − iΓ

2π
(kr)−1 cos θ e−iωt + O(r−∞). (3.12)

When r = O(M−1), the first term in the expression (3.12) matches to the incident
acoustic wave at O(δ) by construction. The next term must match to a flow in the
wave region at O(M2δ). This supports the description of the scattering process given
in § 1: the incident acoustic wave at O(δ) induces a flow in the vortical region at
O(Mδ), which in turn induces a scattered wave in the wave region at O(M2δ). Note
that this second term in (3.12) vanishes when the circulation vanishes, although the
corresponding term in (3.11) is non-zero even in that case.

To complete the description of the flow in the vortical region at O(Mδ), we obtain
expressions for p11 and ρ11. From (3.7c), and using (3.11), we have

∇2p11 = − i

ω
[6ΩΩ′ + 2r(Ω′2 + ΩΩ′′)] cos θ e−iωt. (3.13)

The solution of (3.13) that satisfies the matching condition (3.2a) is

p11 = ρ11 = i

(
1− Ω2

ω2

)
kr cos θ e−iωt. (3.14)
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In the limit r →∞, (3.14) implies that

p11 = ikr cos θ e−iωt − iΓ 2

4π2kr3
cos θ e−iωt + O(r−∞). (3.15)

From (3.12) and (3.15) we see that u11 and p11 match to terms O(M2δ) and higher in
the wave region, and so there is no flow in the wave region at O(Mδ), as indicated in
(2.14).

4. The solution at O(M2δ)

4.1. The solution in the wave region at O(M2δ)

At O(M2δ), the equations in the wave region are

∂Φ21

∂t
+U 0 ·U 01 + P21 = 0, (4.1a)

∂H21

∂t
+ ∇2Φ21 + ∇ · (U 0H01) = 0, (4.1b)

P21 = H21. (4.1c)

This leads to the forced wave equation

∂2Φ21

∂t2
− ∇2Φ21 = U 0 · ∇H01 −U 0 · ∂U 01

∂t
= − iΓk

π

Y

R2
ei(kX−ωt). (4.2)

We may write the solution to this equation as

Φ21 = − iΓ

4π
ϕ e−iωt +

∞∑
n=0

H (1)
n (kR) [An cos nθ + Bn sin nθ] e−iωt, (4.3)

where ϕ satisfies

(−k2 − ∇2)ϕ = 4k eikX ∂

∂Y
lnR, (4.4)

H (1)
n is a Hankel function of the first kind (Abramowitz & Stegun 1965), and the

constants An and Bn must be determined by matching to the flow in the vortical
region.

Using a Fourier transform in X, the solution to (4.4) may be written as

ϕ = sgn(Y )

∫ ∞
−∞

eilX

l − k [e−|l−k||Y | − e−(l2−k2)1/2|Y |] dl. (4.5)

Equation (4.4) shows that ϕ is an odd function of Y , as may be seen from (4.5);
we henceforth consider only Y > 0 in our analysis. It is also apparent that ϕ is a
function of kX alone. For a causal solution, we require that waves propagate away
from the X-axis for large |Y |, and this determines the analytic branch of (l2 − k2)1/2

in (4.5). We take branch cuts from ±k to ±(k+i∞), and take the branch of (l2−k2)1/2

that, for real l, is real and positive when l2 > k2 and imaginary and negative when
l2 < k2. Hence the integral in (4.5) exists as an integral along the real l-axis, with an
integrable singularity at l = k.

To match to the flow in the vortical region, we require the asymptotic behaviour
of (4.5) for small values of R. We divide the range of integration into three portions:

ϕ = eikX

(∫ −1/ε

−∞
+

∫ 1/ε

−1/ε

+

∫ ∞
1/ε

)
eiuX

u
[e−|u|Y − e−(u2+2ku)1/2Y ] du, (4.6)
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where ε is a small parameter, whose asymptotic order relative to R we are free to
choose. In the inner integral we expand the exponentials in X and Y . In the outer
integrals, we rescale the integration variable and expand. The conditions that we
require on ε are kR � kε� 1. Then

ϕ = eikX

{
−kY

∫ −Y /ε
−∞

ev(iX/Y+1)

v
dv + kY

∫ ∞
Y /ε

ev(iX/Y−1)

v
dv

+Y

∫ 1/ε

−1/ε

1

u
[−|u|+ (u2 + 2ku)1/2] du+ . . .

}
= 2kY

(
1− γE − ln ( 1

2
kR)− 1

2
iπ
)

+ O(R2 lnR), (4.7)

where γE = 0.5772 . . . is Euler’s constant.

4.2. The solution in the vortical region at O(M2δ)

At O(M2δ), (2.12) and (2.3b) are

∂ζ21

∂t
+ ∇ · (u0ζ21 + u21ζ0) = 0, (4.8a)

∂ρ01

∂t
+ ∇ · u21 = 0. (4.8b)

To represent u21, we write u21 = ∇φ21 + k × ∇ψ21. Equation (4.8b) then gives

∇2φ21 = iω e−iωt. (4.9)

We cannot determine a unique solution for φ21, since the asymptotic matching
conditions must be applied to the velocity field u, and not to the individual components
φ and ψ. Therefore, we may take for φ21 any solution of (4.9). The matching conditions
are then used to determine ψ21 uniquely. A convenient choice of solution to (4.9) is

φ21 = 1
4
iωr2 e−iωt. (4.10)

The vorticity equation (4.8a) is then

∂ζ21

∂t
+ Ω

∂ζ21

∂θ
− 1

r

dζ0

dr

∂ψ21

∂θ
= − iω

2r

d

dr

(
r2ζ0

)
e−iωt, (4.11)

where ζ21 = ∇2ψ21. By expanding U 01 for small R up to O(R), the matching condition
on u21 is

u21 → ikxie−iωt = 1
2
ik [r(1 + cos 2θ)r − r sin 2θ θ] e−iωt as r →∞, (4.12)

where r and θ are unit vectors in the r- and θ-directions respectively. We can verify
that ∇φ21 matches to the θ-independent part of (4.12). The rest of (4.12) requires

ψ21 → − 1
4
ikr2 sin 2θ e−iωt as r →∞. (4.13)

Equation (4.11) is a forced linearized vorticity equation. We solve this equation by
a decomposition into azimuthal modes. The forcing term on the right-hand side of
(4.11) implies that, unlike (3.4), mode zero is non-trivial, while the solution at all other
modes is given by solutions of the Rayleigh equation (3.5). The matching condition
(4.13) implies that the amplitude of mode two must be non-zero. The solution to
(4.11) is

ψ21 = f21(r)e
−iωt + g2(r) ei(2θ−ωt) + g−2(r) ei(−2θ−ωt), (4.14)
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where f21(r) satisfies

1

r

d

dr

(
r
df21

dr

)
=

1

2r

d

dr

(
r2ζ0

)
. (4.15)

Equation (4.15) gives

f21(r) =
1

2

(
r2Ω(r)− Γ

2π

)
. (4.16)

Thus, f21(r) = O(r−∞) as r → ∞, consistent with the asymptotic matching condition
(4.12).

The functions g2(r) and g−2(r) must in general be obtained numerically. However,
they are not required for matching to the flow in the wave region at O(M2δ). To see
this, recall that g±2(r) = α±2(r

2 + β±2r
−2) +O(r−∞) as r →∞, where the constants β±2

are determined by solving (3.5) for n = ±2. The coefficients α±2 are determined from
the asymptotic matching condition (4.13). The result is α2 = −α−2 = −k/8, and so,
for large r, we have

ψ21 = − 1
4
ikr2 sin 2θ− 1

8
(β2− β−2)kr

−2 cos 2θ− 1
8
(β2 + β−2)ikr

−2 sin 2θ+O(r−∞). (4.17)

The terms of form r−2 in (4.17) then match back onto the flow in the wave region at
O(M4δ). Therefore, to O(M2δ), it is not necessary to solve for g2(r) and g−2(r).

4.3. Matching at O(M2δ)

The form of u11 as r →∞, derived from (3.12), implies that U 21 must satisfy

U 21 → − iΓk

2πω2
k × ∇ (R−1 cos θ

)
e−iωt as R → 0. (4.18)

Equivalently,

Φ21 → iΓk

2πω2
R−1 sin θ e−iωt as R → 0. (4.19)

Now, from (4.7), we have that ϕ(kX ) is finite as R → 0. The condition (4.19) must
therefore be satisfied by choosing B1 in (4.3) to be non-zero (and all the other An and
Bn to be zero). The result is

Φ21 = − iΓ

4π
ϕ(kX )e−iωt − Γ

4
H

(1)
1 (kR) sin θ e−iωt. (4.20)

This expression describes the leading-order scattered field in the wave region. The first
component arises from the interaction of the incident plane wave with the long-range
azimuthal velocity of the vortex in the wave region. The second component, which
was obtained by Howe (1975), arises from the unsteady dynamics in the vortical
region induced by the incident plane wave.

An expression for P21 can be obtained from (4.1a):

P21 =
Γω

4π
ϕ(kX )e−iωt − iΓω

4
H

(1)
1 (kR) sin θ e−iωt +

ΓY

2πR2
ei(kX−ωt). (4.21)

It can be shown that P21, unlike Φ21, is O(R lnR) as R → 0. The singular term in the
expansion of iωΦ21 for small R is exactly compensated by the last term in (4.21). This
is essential, since we see from (3.15) that p11 has no terms of form r−1 sin θ for large
r, and hence P21 must have no terms of form R−1 sin θ for small R. This provides a
check on the asymptotic expansions.

A contour plot of the root-mean-square (r.m.s.) pressure amplitude at O(M2δ),
i.e. P rms

21 ≡ |P21|/
√

2, scaled by Γω/2π, is shown in figure 2. The integral in (4.5) is
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Figure 2. Contour plot of P rms
21 /(Γω/2π) as a function of X/λ, where λ = 2π/k is the wavelength

of the incident wave. Contour interval: 0.25. Note that P rms
21 vanishes on the X-axis.

evaluated numerically, using the numerical integration procedure dqawfe designed
specifically to cope with trigonometric integrands and which uses an adaptive step
size. The solutions presented here were obtained with an accuracy of six significant
figures.

The r.m.s. pressure shown in figure 2 has small amplitude in the negative X-
direction and vanishes along the X-axis. The r.m.s. pressure field is greatest in a
parabolic region about the positive X-axis. The pattern is very similar to figure 2 of
Colonius et al. (1994), which showed the r.m.s. pressure field in a nonlinear numerical
simulation. The principal difference between our figure 2 and figure 2 of Colonius
et al. (1994) is that our r.m.s. pressure is symmetric about Y = 0. The asymmetry
obtained by Colonius et al. (1994) arises from higher-order effects which do not enter
into our analysis at O(M2δ).

5. Far-field analysis
As previously mentioned, Lund & Rojas (1989) have proposed using ultrasound

to probe turbulence in laboratory experiments. In a typical experimental setting,
the sensors, which detect the scattered sound field, will be placed several acoustic
wavelengths from the vortex. It is therefore of interest to analyse P21 given by (4.21) in
the far-field limit R → ∞. We focus attention on the scattering cross-section, defined
to be the r.m.s. scattered pressure as a function of θ, for large R.

In figure 3 we show the scattering cross-section at R/λ = 1, 2, 3, 4. For small values
of R/λ the solution appears dipolar, as can be predicted from (4.21), using (4.7). As
R/λ increases, an increasing number of local extrema appear. The angles θ = 0 and
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Figure 3. The scattering cross-section for (a) R/λ = 1, (b) 2, (c) 3, (d) 4.
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Figure 4. The scattering cross-section for (a) R/λ = 6, (b) 7.5, (c) 10, (d) 20.

θ= ± π are global minima, where the amplitude of the scattered wave is zero. The
global maxima are the two maxima on either side of the direction θ = 0. As R/λ
increases, the angle at which these global maxima occur moves progressively closer
to θ = 0, and the amplitude saturates. This interpretation is reinforced in figure 4,
which shows scattering cross-sections for R/λ = 6, 7.5, 10, 20.
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Figures 3 and 4 agree with the scattering cross-sections obtained by Colonius et al.
(1994) from their analytical solution (figure 14 of their paper). However, Colonius et
al. (1994) did not determine the asymptotic behaviour of their solution in the far-field
limit. We will show that the maximum amplitude of P rms

21 approaches a constant value
as R →∞, the angle at which this maximum occurs scales as R−1/2, the local extrema
become confined to a region about the positive X-axis, and their number increases
without bound.

To obtain the pressure in the limit R → ∞, we calculate the asymptotic behaviour
of the integral (4.5) for large R. As before, we only consider Y > 0 since P21 is an
odd function of Y . We note that, because the singularity at l = k is integrable, the
integral (4.5) is equal to the sum of two Cauchy principal part integrals I1 and I2,
where

I1 = P
∫ ∞
−∞

eilX

l − k e−|l−k|Y dl, I2 = −P
∫ ∞
−∞

eilX

l − k e−(l2−k2)1/2Y dl. (5.1)

The integral I1 can be evaluated without approximation:

I1 = P
∫ ∞
−∞

eilX

l − k e−|l−k|Y dl = eikX ln

(
Y + iX

Y − iX

)
= ieikX(π− 2θ), (5.2)

where here θ lies in the interval (0, π). The expression (5.2) is non-zero at Y = 0, but
we shall see that I2 compensates for this.

The integral I2 is the sum of the integral along two contours C1 and C2 in the
complex l-plane, where C1 runs along the real l-axis from l = −∞ to k − ε, and C2

runs along the real l-axis from l = k+ ε to ∞, and where the limit ε→ 0 is taken. We
can rewrite I2 as the integral along a connected contour C ≡ C1 +C3 +C2, minus the
integral along C3. The contour C3 is a semicircle of radius ε below the real l-axis in
the complex l-plane, centred at l = k, with counterclockwise direction of integration.
Hence,

I2 = −
∫
C

eh(l)

l − k dl + πieikX, (5.3)

where

h(l) = ilX − (l2 − k2)1/2Y (5.4)

is the argument of the exponential, and the second term in (5.3) arises from the
integration along C3. There is a single critical point of h in the complex l-plane at
l = k cos θ. We deform the contour C onto Cs, the contour of stationary phase passing
through the critical point. The leading-order contribution to the integral along Cs
arises from the region |l − k cos θ| = O(R−1/2 sin θ). When kR sin2 θ � 1, we may
expand the function h about the critical point. Writing l = k cos θ + u, we have

h = kR − Ru2

2k sin2 θ
+ O

(
Ru3 cos θ

k2 sin4 θ

)
. (5.5)

We retain k and θ in the order term to show the dependence of the asymptotic
expansion on the Strouhal number and on the angle. Hence,

ϕ = I1 + I2 = 2i(π− θ)eikX + cot ( 1
2
θ)

(
2π

kR

)1/2

eikR−iπ/4 + O((kR)−3/2 cot3 ( 1
2
θ)). (5.6)
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Using (4.21), the expression for P21 in the limit R →∞ is

P21 =
Γω

2π

[
i(π− θ)eikX + 1

2
cos θ cot ( 1

2
θ)

(
2π

kR

)1/2

eikR−iπ/4

]
+O((kR)−1 sin θ, (kR)−3/2 cot3 ( 1

2
θ)). (5.7)

The first term was given by Sakov (1993). The second term in this expression is the
one obtained by Pitaevskii (1959), Ferziger (1974), Fabrikant (1983) and Lund &
Rojas (1989), and has the standard form for diffraction in two dimensions. It vanishes
when θ = ±π/2, which accounts for the lack of oscillations at θ = ±π/2 in the
scattering cross-sections shown in figures 3 and 4.

The combined contributions from I1 and I2 ensure that there is no discontinuity
along θ = π. Indeed, ϕ vanishes there, as can be seen from (4.5). However, (5.7) is
infinite along θ = 0. The expansion (5.6) is invalid when kRθ2 = O(1) because then
the critical point at l = k cos θ approaches the singularity at l = k. We now explicitly
consider small θ and write l = k + θ2v. We find

h = ikR(1− 1
2
θ2)− kRθ2(v + i(2v)1/2) + O(kR−1/2), (5.8)

where we have used the fact kRθ2 = O(1).
The integral I2 is then

I2 = πiei(kR−η2) − ei(kR−η2)

∫
Cv

e2(iv−(2v)1/2)η2 dv

v
(5.9)

where η = θ(kR/2)1/2 and is positive since we are considering only positive Y . The
function (2v)1/2 is real and positive when v is real and positive, and the branch cut
runs from v = 0 to i∞. The contour Cv in the complex v-plane is the image of the
contour C in the complex l-plane. After deforming Cv onto the branch cut in the
v-plane, it is straightforward to show that

I = I1 + I2 = 4ei(kR−η2)

∫ ∞
0

e−w
2

sinh [2eiπ/4wη]
dw

w
+ O(R−1/2)

= eikRF(η) + O(kR−1/2), (5.10)

where

F(η) = 4π1/2ei(π/4−η2)

∫ η

0

eiu2

du. (5.11)

The integral in (5.11) is related to the Fresnel integrals† of Abramowitz & Stegun
(1965) by

∫ η
0

eiu2

du = (π/2)1/2(C + iS)[(2/π)1/2η]. The corresponding asymptotic form
for P21 is

P21 =
Γω

4π
eikRF(η) + O(kR−1/2). (5.12)

For large η, the asymptotic behaviour of F(η) is given by

F(η) = 2πie−iη2

+ 2π1/2e−iπ/4η−1 + O(η−2). (5.13)

The expression (5.13) matches to (5.6) when the limit θ → 0 is taken in the latter. Thus,
our far-field solution in the parabolic region kRθ2 = O(1) matches smoothly to the
far-field solution obtained by the steepest-descents analysis in the region kRθ2 � 1.

In figure 5 we show |F(η)|, together with its limiting form for large η from (5.13).

† We thank F. G. Leppington for deriving the connection between (5.10) and the Fresnel integrals.
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Figure 5. Amplitude of F(η) (solid curve) and its asymptotic approximation (5.13) (dashed curve)
for large η.

From this, we see that the maximum amplitude of |F(η)| is Fmax ≈ 8.433, and is
achieved at η = ηmax ≈ 1.516.

From (5.12), we see that the maximum value of P rms
21 /(Γω/2π) approaches the

constant value Fmax/2
√

2 ≈ 2.982 as R → ∞. The angle at which this occurs is given
by |θ| = ηmax(kR/2)−1/2, as suggested by the results of Colonius et al. (1994) (figure 16
of their paper). Analysis of (5.13) shows that, for sufficiently large η, local extrema
of |F(η)| occur at η2 ≈ (m− 1

4

)
π, for integer values of m. Hence the number of local

extrema in the scattering cross-section increases without bound as R → ∞, and all
the extrema occur in the region kRθ2 = O(1).

Figure 6(a) shows the scattering cross-section for R/λ = 70, together with P rms
21

evaluated from the asymptotic solution (5.7), valid for kRθ2 � 1. We can see that this
asymptotic solution agrees well with the numerical solution, except in a small region
about θ = 0.

Figure 6(b) shows the scattering cross-section in a small region about θ = 0 for the
same value of R/λ, together with P rms

21 evaluated from the asymptotic solution (5.12),
valid for kRθ2 = O(1) and kR � 1, and from the asymptotic solution (5.7) as before.
For the value of R/λ shown, the asymptotic solution (5.12) predicts the maximum
amplitude of P rms

21 , and the spacing in η of the subsequent extrema. However, even at
this large value of R, (5.12) predicts accurately the amplitudes of only the first few
extrema.

6. The solution to O(M4 lnM δ)

6.1. The solution in the vortical region to O(M3δ)

The scattered wave field at O(M2δ) has zero amplitude at Y = 0. However, the
numerical simulations of Colonius et al. (1994) indicate that the amplitude of the
scattered wave along the X-axis is smaller than the amplitude of the scattered wave
elsewhere, but nonetheless non-zero. In this section we develop the solution in the
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Figure 6. The scattering cross-section at R/λ = 70. (a) The full numerical solution (solid line)
and the far-field asymptotic solution (5.7) (circles). (b) As (a), in the region kRθ2 = O(1), with the
scattering cross-section derived from the asymptotic solution (5.12) (dashed line).

vortical region to O(M3δ), and show how this matches to a scattered wave in the
wave region at O(M4 lnM δ) which has non-zero amplitude along the X-axis.

To determine the matching conditions to be satisfied by the flow in the vortical
region to O(M3δ), we expand the solution in the wave region for small R:

Φ = − iδ

ω
[1 + ikR cos θ − 1

4
k2R2(1 + cos 2θ)− 1

24
ik3R3(cos 3θ + 3 cos θ)] e−iωt

+
iM2δΓ

4π

(
2

kR
+ kR[ln( 1

2
kR) + γE − 3

2
+ 3

2
πi]

)
sin θ e−iωt

+O(M4δ,M2δR2 lnR). (6.1)

The form of (6.1) implies that there must be flow in the vortical region at O(M3 lnM δ)
and O(M3δ). In the limit r →∞, the velocity ∇φ+k×∇ψ in the vortical region must
be consistent with

φ311 → iΓ

4π
kr sin θ e−iωt, (6.2a)

ψ311 → 0, (6.2b)

φ31 → − 1

24ω
(kr)3(cos 3θ + 3 cos θ) e−iωt

+
iΓ

4π
[ln( 1

2
kr) + γE − 3

2
+ 3

2
πi]kr sin θ e−iωt, (6.2c)

ψ31 → 0. (6.2d)
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We are free to add terms to the matching conditions on ψ311 and ψ31, provided we
subtract corresponding terms from the matching conditions on φ311 and φ31, such
that the matching conditions on the velocity remain unchanged.

In the vortical region, (2.12) and (2.3b) at O(M3 lnM δ) are

∂ζ311

∂t
+ ∇ · (u0ζ311 + u311ζ0) = 0, (6.3a)

∇ · u311 = 0. (6.3b)

Equations (6.3a) and (6.3b) for u311 are identical to (3.7a) and (3.7b) for u11. We write
u311 = k × ∇ψ311, with φ311 = 0. The matching conditions (6.2a) and (6.2b) are then
replaced by the equivalent condition

ψ311 → iΓ

4π
kr cos θ e−iωt. (6.4)

The matching condition (6.4) for ψ311 differs from the matching condition (3.8) for
ψ11 only by a constant factor and rotation though an angle of π/2 in θ, and (6.3)
can be solved for ψ311 using a procedure identical to that used to determine ψ11. The
solution is

ψ311 =
Γ

4π
kr

(
i cos θ +

Ω

ω
sin θ

)
e−iωt. (6.5)

In the limit r →∞, we have

ψ311 =
iΓ

4πk
r cos θ e−iωt − Γ 2

8π2r
sin θ e−iωt + O(r−∞). (6.6)

At O(M3δ), (2.3b) is

∇2φ31 = −∂ρ11

∂t
− ∇ · (u0ρ11 + u11ρ0) = −kr(ω cos θ − iΩ sin θ)e−iωt. (6.7)

The solution that satisfies (6.2c) is

φ31 = − 1

24ω
(kr)3(cos 3θ + 3 cos θ)e−iωt +

iΓ

4π
[ln( 1

2
kr) + γE − 3

2
+ 3

2
πi]kr sin θ e−iωt

− 1
2
ik sin θ

[
1

r

∫ r

0

s3Ω̃(s) ds+ r

∫ ∞
r

sΩ̃(s) ds

]
e−iωt, (6.8)

where Ω̃(r) ≡ Ω(r)− Γ/2πr2.
In the limit r →∞, (6.8) takes the form

φ31 = − 1

24ω
(kr)3(cos 3θ + 3 cos θ)e−iωt +

iΓ

4π
[ln( 1

2
kr) + γE − 3

2
+ 3

2
πi]kr sin θe−iωt

− ik

2r
sin θ

∫ ∞
0

s3Ω̃(s) ds e−iωt + O(r−∞). (6.9)

The integral in (6.9) is a ‘renormalized’ angular momentum.
The equation for ψ31 is then

∂ζ31

∂t
+ Ω

∂ζ31

∂θ
− 1

r

∂ψ31

∂θ

dζ0

dr
= −∇ · (ζ0∇φ31) (6.10)

with ζ31 = ∇2ψ31. Equation (6.10) is a forced linearized vorticity equation. The forcing
term is non-zero for azimuthal modes one and three. This equation must be solved
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subject to the matching condition ψ31 → 0 as r →∞. Because the forcing is localized,
the solutions of (6.10) that satisfy the matching condition take the form r−|n| for large
r. This means that

ψ31 = (D1 + D−1)r
−1 cos θ e−iωt + i(D1 − D−1)r

−1 sin θ e−iωt + O(r−3), (6.11)

where D1 and D−1 are constants which are determined by solving (6.10). As we shall
see, however, the values of these constants are not required to determine the flow in
the wave region at O(M4 lnM δ). Note also that the form of all fields calculated so
far in the vortical region shows that there is no flow in the wave region at O(M3δ).

6.2. The solution in the wave region at O(M4 lnM δ)

The expansion parameter in the wave region is M2. Therefore, no terms at lower orders
in the wave region can interact to force flow in the wave region at O(M4 lnM δ). The
flow at this order therefore satisfies

∂Φ411

∂t
+ P411 = 0, (6.12a)

∂H411

∂t
+ ∇2Φ411 = 0, (6.12b)

P411 = H411. (6.12c)

The solution at this order arises entirely as a result of matching conditions with the
vortical region, and must be causal. Therefore

Φ411 =

∞∑
n=0

H (1)
n (kR)(An cos nθ + Bn sin nθ) e−iωt, (6.13)

where An and Bn are constants.
The asymptotic limits (6.6), (6.9), (6.11), and (4.17) imply

Φ411 → Γ 2

8π2
R−1 cos θ e−iωt, (6.14a)

Φ41 → − 1
2
ikR−1 sin θ

∫ ∞
0

s3Ω̃(s) ds e−iωt

+(D1 + D−1)R
−1 cos θ e−iωt + i(D1 − D−1)R

−1 sin θ e−iωt

− 1
8
(β2 − β−2)kR

−2 cos 2θ − 1
8
i(β2 + β−2)kR

−2 sin 2θ. (6.14b)

Note that, although our interest here is in the constants An and Bn in the solution at
O(M4 lnM δ), it is necessary to consider the matching conditions at both O(M4 lnM δ)
and O(M4δ).

For n > 1, all the constants An and Bn in (6.13) vanish, since there are no terms in
the vortical region for them to match onto. The matching condition (6.14a) implies
that A1 = iΓ 2k2/16π and B1 = 0 in (6.13). The value of A0 must be determined by
matching to the azimuthal mode-zero flow at O(M4 lnM δ) in the vortical region.
At this order, the flow in the vortical region is incompressible, and the mode-zero
streamfunction satisfies the Rayleigh equation (3.5) with n = 0. Therefore, A0 = 0 by
the arguments given in § 3.1, and the solution in the wave region at O(M4 lnM δ) is

P411 = iωΦ411 = −Γ
2k2

16π
H

(1)
1 (kR) cos θ e−iωt. (6.15)
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This is non-zero along the axis Y = 0, and hence represents the leading-order scattered
wave field along this axis.

7. Discussion
Our analysis shows that the problem of scattering of an acoustic plane wave by a

vortex with arbitrary circulation in the Born limit is well posed. The solution (4.21) for
the scattered pressure satisfies the causality conditions appropriate to this problem.
This may be seen by adding a small imaginary part to k; then the scattered solution
decays exponentially for large positive X. The integral representation (4.5) of the
scattering which results from interaction in the wave region is readily obtained. To
obtain the full scattered sound field, a second component must be added which arises
from matching to the dynamics in the vortical region.

The steepest-descents contribution to the far-field behaviour, whose amplitude goes
as (kR)−1/2 for large R, is always smaller than the contribution i(π − θ) eikX arising
from other terms in (4.5), except in the parabolic region kRθ2 = O(1). In this parabolic
region a different expansion procedure is required. The far-field form of the solution
remains bounded for all θ. Berthet & Lund (1995) had conjectured that the problem
of scattering of a plane wave by a vortex with circulation might be ill-posed, but this
interpretation appears incorrect.

The solution of Colonius et al. (1994) was obtained via the ‘acoustic analogy’
formulation of Lighthill (1952). Their starting point is the dimensional equation

∂2ρ′

∂t2
− c2

0∇2ρ′ =
∂2

∂xi∂xj
Tij , (7.1)

where Tij = ρuiuj + p0[(1 + ρ′/ρ0)
γ − γρ′/ρ0 − 1]δij and ρ′ = ρ − ρ0. They then

approximate (7.1) by taking Tij = ρ0uiuj , which is valid in the limit of small Mach
number, and also take the O(δ) contribution to this approximate Tij that results from
substituting into Tij the velocity fields of the basic vortex and the incident plane wave.

To O(M2δ), our matched asymptotic expansions yield the same equations in the
wave region, because all the nonlinear terms (i.e. the terms on the right-hand-side
of (4.2)) arise from the interaction of the basic vortex and the incident plane wave.
However, in the vortical region, the acoustic analogy formulation is equivalent to
replacing u11 in (3.7c) by ie−iωt. The result is that terms O(Ω2/ω2) in the expression
(3.14) for p11 are neglected. This does not affect the asymptotic matching conditions
on P21, because the terms O(Ω2/ω2) in (3.14) match onto terms O(M4δ) in the wave
region. Since our solution and the solution of Colonius et al. (1994) both satisfy
causality conditions, it appears that they must be identical to O(M2δ). However, there
is no a priori reason to neglect terms O(Ω2/ω2) in (3.14), except in the limit of large
Strouhal number, in which Ω2/ω2 � 1 by assumption.

If the circulation Γ of the vortex vanishes, all the scattered fields that we have
computed vanish. Moreover, the scattered waves in the wave region satisfy the
unforced wave equation (2.19) to all orders in M. In that case, the leading-order
scattered waves arise at O(M4δ), and must satisfy the matching condition (6.14b).
All terms in (6.14b) are in general non-zero when the circulation vanishes, but the
constants D1, D−1, β2, β−2 must be determined numerically. The resulting scattered
wave field consists of a dipole and a quadrupole, as found by Colonius et al. (1994)
using the acoustic analogy formulation. Integral representations can be derived for D1

and D−1, but β2 and β−2 are obtained by solving (3.5) for n = ±2, which can be done
analytically only in special cases. However, vortices with vanishing circulation are
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likely to be susceptible to inviscid shear-flow instability, because their vorticity must
be a non-monotonic function of radius (Dritschel 1988). Vortices with monotonic
vorticity may still be susceptible to acoustic destabilization (Broadbent & Moore
1979), but the growth rates of such instabilities are small (O(M4)) at small Mach
number. The three-dimensional problem, in which necessarily

∮
u · dl = 0, leads to

faster spatial decay of the velocity field due to the vortex. The leading-order scattered
wave in the three-dimensional satisfies an unforced wave equation at leading order
(cf. (4.2)). The leading-order scattered wave is a dipolar wave, and arises entirely from
interaction between the vortex and the incident wave in the vortical region (Kambe
& Mya Oo 1981).

The matching condition (6.14b) shows that the scattered wave field at O(M4δ)
contains information about the internal structure of the vortex, while the scattered
wave field at O(M2δ) and O(M4 lnM δ) depends only on the circulation of the vortex.
If ultrasound is to be used to probe vortices, as proposed by Lund & Rojas (1989), it
may be desirable to use the scattered wave fields at O(M4δ) in an inverse problem to
determine information about the internal structure of the vortices.
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Labbé, R. & Pinton, J.-F. 1998 Propagation of sound through a turbulent vortex. Phys. Rev. Lett.
81, 1413–1416.

Lighthill, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond.
A 211, 564–587.

Lighthill, M. J. 1953 On the energy scattered from the interaction of turbulence with sound or
shock waves. Proc. Camb. Phil. Soc. 49, 531–551.

Lin, C. C. 1955 The Theory of Hydrodynamic Stability . Cambridge University Press.

Lindsay, R. B. 1948 Compressional wave front propagation through a simple vortex. J. Acoust. Soc.
Am. 46, 89–94.

Llewellyn Smith, S. G. 1995 The influence of circulation on the stability of vortices to mode-one
disturbances. Proc. R. Soc. Lond. A 451, 747–755.

Lund, F. & Rojas, C. 1989 Ultrasound as a probe of turbulence. Physica D 37, 508–514.

Müller, E.-A. & Matschat, K. R. 1959 The scattering of sound by a single vortex and turbulence.
Tech. Rep. Max-Planck-Institut für Strömungsforchung Göttingen.
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